目前海外交易平台及教程汇总

目前海外交易平台:
www.coolcoin.com 不需要翻 (日本聚币)
www.allcoin.com 不需要翻 (元宝国际站)
www.bit-z.com 需要翻 (公信宝)
链接:https://bittrex.com 需要翻 B网
链接:https://www.poloniex.com/ 需要翻 P网
使用教程
B网教程:链接:http://8btc.com/thread-74678-1-1.html
P网教程:链接:http://8btc.com/thread-74691-1-1.html
L网教程:链接:http://8btc.com/thread-74757-1-1.html
Bitfinex教程:链接:http://8btc.com/thread-74679-1-1.html
LocalBitcoins教程:链接:http://8btc.com/thread-74753-1-1.html
V-P-N汇总
链接:https://www.yuntipub.com
蓝灯:链接:https://getlantern.org/zh_CN/
云梯:链接:https://www.ytsimple.com/
穿云兔:链接:http://www.douhunol.com/
SS-Cub:链接:https://sscube4.com/ucenter/register
shadowsocks: 链接:https://cp.shadowsocks.network/cart.php
金钥匙:链接:http://safasti.com/

三妹虚拟币打款操作全流程

以BCH打款操作为例,BTC、ETH、LTC打款,请参考本操作流程
BCH等虚拟币提供帮助预付款通常24小时左右匹配。匹配后,必须在48小时(周末72小时)内转币,否则封号。

1、点开长托书左上角白色三角形图标(蓝圆圈内),点击“我同意付款” ,再点击OK(此步骤极为 重要:锁定了此订单。避免你已打款,而订单确因别的缘故被取消了!尽管这样的概率极低)


2、点开长托书右下角“阅读更多”(R订单转币详情),查看收款人的收币地址等信息

3、登录对应该三妹账户的比特币钱包(以BLOCKCHAIN国际钱包为例)
1)登录邮箱,打开钱包系统之前发给你的“欢迎来到[我的钱包]”,或“申请登录授权”邮件

2)点击你的钱包识别码(钱包ID,即账号),进入钱包登录页面: 输入你的钱包密码,点击“登录”,系统提示你检查邮件以确认是你本人登录

3)查收系统发来的“申请登录授权”邮件

4)点击“授权登陆”链接,几秒钟后出现“登录批准”页面。回到你的登录钱包页面,等几秒钟,钱包会自动打开,出现钱包主页

4、点击左侧菜单栏中的BITCOIN CASH,进入BCH钱包

5、点击“发送”,弹出BCH发送界面:复制、黏贴“阅读更多”里面的BCH收币地址,输入转币金额:0.01(系统会自动显示矿工费)

6、点击“继续”,进入发送审核页面:核实收款人BCH地址、金额和矿工费(系统自动调节)

7、核实无误后,点击“发送BCH”,完成转币操作,并回到BCH钱包页面

8、再次点开长托书左上角白色三角形图标(蓝圆圈内),点击“我已经缴费” (千万别误点:我拒绝付款)

9、进入“确认执行订单”页面(无需上传转币截图)

10、右边工具条往下拉到底,点击“下一页”

11、再次进入“确认执行订单”页面,再次核对

12、同样,右边工具条往下拉到底,点击“下一页”

13、长托书左上角图标变成“白色钩”(绿圆圈内),即操作成功

特别说明:
1)一个三妹账号只对应一个BCH钱包,收币用绑定此账户的BCH地址;转币用此钱包操作。
2)伙伴的订单匹配了,领导人绝不能用自己的钱包替伙伴转币给收款人。否则,按多账户查处!
3)领导人可以转币至伙伴的BCH地址,然后伙伴再用自己的钱包转币给收款人。
4)矿工费是必须的成本,别过于心痛。
新旧BCH地址转换
有些BCH钱包未同步升级,无法转币到新地址(bitcoincash:打头),可将新地址转换成其唯一的老地址(下图左边),就可以转币给对方了
1) https://bch.btc.com/

2)http://cashaddr.bitcoincash.org/

比特币的技术原理

比特币以及区块链具有去中心化、不可篡改、不可伪造、可追溯的特点。这些特点是依赖什么技术得以实现的?
去 中 心 化
首先,来说说作为比特币和区块链最重要的特性之一去中心化,是依靠什么技术实现的呢?通过下面的对比让你更好理解:

由此可以看出中心化的交易机构,在确认交易金额时是用不超过5次的人工验证来操作的。中心化是用非对称加密技术来验证的。那什么是非对称加密技术?它是指加密和解密的时候使用不同密钥的加密算法。如果加密和解密使用相同的密钥,我们称为对称加密。对称加密不安全的地方在于,大家使用的秘钥如果相同,这个密钥就已经不安全了。

由上面就可以看出,如果A和B两个用户进行去中心化的交易,A和B可以互相告知对方公钥也就是比特币地址,但是各自的签名和验证密码都是保密的,不可以告诉对方。比特币地址在网络里可以公开,但是即使其他人都收到了也没用,只有B有匹配的私钥,当B输入匹配的签名和密码后,合法交易在公私钥匹配的情况下顺利完成。

在非对称加密机制里,公钥和私钥是成对存在的,每个矿工在拿到一笔转账交易时候都可以验证公钥和私钥到底是不是匹配的,如果他们是匹配的,这笔交易就是合法的,这样每一个人只需要保管好他自己的私钥,知道自己的比特币地址和对方的比特币地址就能够安全的将比特币进行转账,不需要一个中心化的机构来验证对方发的比特币是不是真的,非对称加密技术保证了比特币的去中心化特点。
不 可 篡 改
我们再来看看,为什么说比特币的区块链账本是无法被篡改呢?这里说的篡改是网络中为了弄虚作假而对账本进行恶意修改。这一点由比特币采用工作量证明机制和最长链机制来保障的。

比特币的 “工作量证明”,简单理解就是一份证明,用来确认你做过一定量的工作。监测工作的整个过程通常是效率非常低的,而通过对工作的结果进行认证来证明完成了一定工作的工作量,是一种非常高效的方式。比如现实生活中的学历证、驾驶证等等,也是通过检验你完成了一定知识的学习或者驾驶过一定时间的汽车,来证明你的技能的,也就是说通过这个结果证明你曾经做过这件事,曾经耗费过所谓的工作量。

工作量证明的特点,对于执行的一方来说,难度是适中的。对于验证方来说是非常容易被验证的。矿工们进行哈希计算,你可以理解为是一种数学的游戏。获得正确答案,就会获得记账权,其他节点经过非常简单的验证之后,就可以同意其记账,并同步账本。打上时间戳后,紧接着进行下一轮算力竞赛。
如果这时候有人想把某个区块高度上某个交易信息进行修改,他需要做什么呢?他需要从这个区块开始把之后所有的区块都重新计算一遍,把账本再同步给其他人。而在他进行计算的同时,其他矿工们已经在原来的链上继续往前进行记账了。因为在比特币的网络里,大家认为最长的链才是正确的链。这个恶意篡改的人,需要在很短的时间内赶上现有区块的高度,让自己的这条区块链成为最长的链,让其他矿工误以为这是正确的账本。

除非这个恶意篡改的人,拥有非常大的算力,至少超过50%,否则基本上没有可能进行这样的篡改。
我们算一笔账,现在全网算力是8E哈希每秒(1 E=1000P,1P=1000T),就是大概每秒进行8*10^18次计算,现在的流行的主流矿机大概每一台的算力是10T左右。如果你想拥有全网51%算力,你需要至少40万台最新的矿机,一台矿机价格按照10000元计算,光是设备这一项就需要投入40亿元人民币。况且,最新的矿机生产赶不上销量,经常处于买不到现货的状态。加上老矿机不断被淘汰,算力不断上涨。你购置设备的速度很难赶上算力上涨的速度。从投资回报率的角度来说,这项投资的成本需要至少40个亿人民币,如果他不是为了6、70个亿以上的利益,并且他有非常雄厚的经济实力和技术实力做支持,一般人也不会有这个动力进行算力攻击的。从网络大环境来看,前面我们也说过,由于去中心化的存在,整个网络非常警惕影响比特币这一情况出现。
曾经在网络上出现有一个矿池的算力接近50%,后来大家就逐渐把自己的算力连接到其他矿池上。其实,从经济学的角度来说,这种51%的攻击也是非常不科学的。我们试想下,当这个攻击的发生,比特币的区块链得到了篡改,比特币的价格将会变得一文不值。他通过这个篡改获得的利益也会受到很大的损失。总而言之,想篡改比特币账本,简直是比登天还要难,同时也无利可图。
不 可 伪 造 可 追 溯
最后我们来说说为什么说比特币不可伪造呢?也就是说不能造假币。我发给你0.1枚比特币,为什么你相信这枚比特币不是我自己伪造出来的,而是真的比特币呢?或者,你怎么相信我没有把这0.1个比特币同时转给了2个人或3个人呢?这和比特币的UTXO结构有关系。
所谓“UTXO”英文全称Unspent Transaction Outputs,中文的意思是未花费的交易输出,它是比特币交易生成及验证的一个核心概念。我用你非常熟悉的纸币来举个这个例子。假设我要给你20元钱
20元=2张*5元纸币(超市店员的找零)
         +
       1张*10元纸币(咖啡店员的找零)
拿到这三张钞票之后,我还没有花出去,才能给你。这就叫未花费的交易输出。超市店员的这2张5元钞票,又来自其他人,咖啡店员的1张10元钞票,也可能来自于其他人。这样这些钞票,可以顺藤摸瓜一直追溯到发行的那一刻,由印钞公司根据央行批准发行出来,并首先发给了哪家银行,最后流通到市场上的。由此验证这三张钞票都是真的。

比特币的UTXO也是这样的结构。在比特币世界里的每一笔转账,都能够追溯到上一笔交易。每一笔付款,都可以追溯到上一笔的收款。我给你的0.1个比特币,必须是别人给我的、我还没有进行花费的比特币。然后可以一直往上追溯到它诞生时矿工挖出来的那个区块。这个机制,保证了比特币不可被伪造,不可以被重复支付。重复支付,在比特币世界被叫做“双花”,就是花了2次。在比特币之前,一直没有数字资产能够解决双花问题,而中本聪用这个机制,解决了这个信任问题,使得比特币能够被广泛的应用。

核心内容总结

虽然你可能不懂技术,但是我也希望你能够了解比特币以及区块链去中心化、不可篡改、不可伪造可追溯三大特点的技术原理。
1、非对称加密和分布式存储确保了比特币的“去中心化”;
2、工作量证明、共识机制和最长链机制,保证了比特币“不可篡改”;
3、UTXO结构可以追溯每一枚比特币的前世今生,造就了比特币“不可伪造可追溯”的特性。

「地址、密码、私钥、助记词、Keystore 」那些事

国内最好的以太系钱包当属 imToken,在使用钱包时,有几个名词必须深刻理解,不然就有可能造成区块链资产的损失,这几个名词为地址、密码、私钥、助记词、keystore。
若以银行账户为类比,这 5 个词分别对应内容如下:
地址=银行卡号
密码=银行卡密码
私钥=银行卡号+银行卡密码
助记词=银行卡号+银行卡密码
Keystore+密码=银行卡号+银行卡密码
Keystore ≠ 银行卡号
 
一、地址
地址=银行卡号
1.生成
创建钱包后会生成一个以 0x 开头的 42 位字符串,这个字符串就是钱包地址,一个钱包对应一个钱包地址,地址唯一且不能修改,也就是说一个钱包中所有代币的转账收款地址都是一样的。例如,一个钱包中 ETH 的转账收款地址和 EOS 的转账收款地址是一样。这一点和交易平台上的不一样,平台上不同代币的转账收款地址一般都不同,因此,转币到交易平台前一定要确认好地址。
2.用途
钱包地址可以用于接收别人转币,也可以作为转币的凭证。
 
二、密码
密码=银行卡密码
1.设定
在创建钱包时,需要设定一个密码,这个密码要求不少于 8 个字符,为了安全,密码最好设置复杂一点。密码可以进行修改或重置,修改密码有两种方法,一是直接修改密码,这需要输入原密码。如果原密码忘记了,用助记词或私钥导入钱包,同时设置新密码。
2.用途
密码的用途有两个,一是转账时候的支付密码,二是用 keystore 导入钱包时的登录密码。

 

3.特征
在现实世界中,一个银行卡只对应一个密码,对密码修改后,原密码就失去作用。但是在 imToken 钱包中,就不一样了,一个钱包在不同手机上可以用不同的密码,彼此相互独立,互不影响。例如,在 A 手机钱包中设置了一个密码,在 B 手机导入这个钱包并设置一个新密码,并不影响 A 手机钱包的密码使用。
 
三、私钥
私钥=银行卡号+银行卡密码
1.导出
创建钱包后,输入密码可以导出私钥,这个私钥属于明文私钥,由 64 位字符串组成,一个钱包只有一个私钥且不能修改。
2.用途
在导入钱包中,输入私钥并设置一个密码(不用输入原密码),就能进入钱包并拥有这个钱包的掌控权,就可以把钱包中的代币转移走。
四、助记词
助记词=银行卡号+银行卡密码
助记词=私钥
1.备份
创建钱包后,会出现一个备份助记词功能,选择备份助记词,输入密码,会出现 12 个单词,每个单词之间有一个空格,这个就是助记词,一个钱包只有一个助记词且不能修改。
2.用途
助记词是私钥的另一种表现形式,具有和私钥同样的功能,在导入钱包中,输入助记词并设置一个密码(不用输入原密码),就能进入钱包并拥有这个钱包的掌控权,就可以把钱包中的代币转移走。
3.特征
助记词只能备份一次,备份后,在钱包中再也不会显示,因此在备份时一定要抄写下来。
五、keystore
keystore+密码=银行卡号+银行卡密码
Keystore ≠ 银行卡号
keystore=加密私钥
keystore+密码=私钥
1.备份
钱包里有一个备份 keystore 功能,选择备份 keystore,输入密码,会出现一大段字符,这个就是 keystore。
2.用途
在导入钱包中,选择官方钱包,输入 keystore 和密码,就能进入钱包了。需要说明的是,这个密码是本手机原来设置的本钱包密码, 这一点和用私钥或助记词导入钱包不一样,用私钥或助记词导入钱包,不需要知道原密码,直接重置密码。
3.特征
keystore 属于加密私钥,和钱包密码有很大关联,钱包密码修改后,keystore 也就相应变化,在用 keystore 导入钱包时,需要输入密码,这个密码是备份 keystore 时的钱包密码,与后来密码的修改无关。
六、结语
在现实世界中,如果你的银行卡丢了,密码忘了,可以去银行帮你找回,你的钱还是你的钱,丢不了,这是中心化的优势。
但是在区块链世界中,除了你自己,没有人存储你的钱包信息,钱包信息要是丢了,没人能够帮你找回,钱包公司也不能。因此,只要你保护好钱包信息,钱包里面的财产只属于你自己,谁也抢不走,这是去中心化的优势。
1.忘记
你若把钱包信息忘了,会有什么后果呢?分这么几种情况:
(1)地址忘了,可以用私钥、助记词、keystore+密码,导入钱包找回。
(2)密码忘了,可以用私钥、助记词,导入钱包重置密码。
(3)密码忘了,私钥、助记词又没有备份,就无法重置密码,就不能对代币进行转账,等于失去了对钱包的控制权。
(4)密码忘了,keystore 就失去了作用。
(5)私钥忘了,只要你钱包没有删除,并且密码没忘,可以导出私钥。
可以用助记词、
(7)助记词忘了,可以通过私钥、keystore+密码,导入钱包重新备份助记词。
(8)keystore 忘了,只要你钱包没有删除,密码没忘,可以重新备份keystore。
助记词,
从上可以看出,只要「私钥、助记词、Keystore+密码」有一个信息在,钱包就在。因此,备份好「私钥、助记词、Keystore+密码」最关键。
2.泄露
自己备份好钱包信息很重要,同时防止钱包信息泄漏,也很重要。若把钱包信息泄漏出去了,会有什么后果呢?分这么几种情况:
(1)地址泄漏了,没有关系。
(2)密码泄漏了,没有关系。
(3)地址+密码泄漏了,只要手机不丢,也没有关系。
泄漏了,密码没有泄漏,没有关系。
(5)keystore+密码
泄漏了,别人就能进入钱包,把币转走。
泄漏了,别人就能进入钱包,把币转走。
从上可以看出,只要「私钥、助记词、Keystore+密码」有一个信息泄漏出去,别人就拥有了你钱包的控制权,你钱包中的币就会被别人转移走。因此,「私钥、助记词、Keystore+密码」绝不能泄漏出去,一旦发现有泄漏的可能,就要立刻把里面的币转移走。

 

3.备份
既然私钥、助记词、Keystore+密码」如此重要,那么如何进行保存呢,最安全的方法就是:
手抄纸上
由于 Keystore 内容较多,手抄不方便,保存在电脑上也不安全,因此可以不对 Keystore 进行备份,只手抄私钥、助记词就足够了,手抄备份要注意以下几点:
(1)多抄几份,分别放在不同的安全区域,并告诉家人。
(2)对手抄内容进行验证,导入钱包看能不能成功,防止抄写错误。
(3)备份信息不要在联网设备上进行传播,包括邮箱、QQ、微信等。
(4)教会家人操作钱包。

暂时的结论

在去中心技术转了一个大大的圈后,暂时有以下的结论:
1、去中心技术还是个小苗,唯一能确定的最大的共识目前只能比特币才具备。
2,以太因为ICO火。可是ICO的项目到目前基本上没有落地的。都是炒作。一个以太猫就把以太堵死。你觉得现有的智能合约技术有前途吗?
3,现有的各知山寨币就是把btc和eth的一些特点组合一下,改些参数,有决定性意义吗?所以以后都是个死。
4.一些全新技术比如IOTA还没有得到验证。风险较大。
综上所述。现阶段囤币只能是比特。比特的技术比较基础但是是革命性的。所以比特暂时不需要在技术上和其它币比。光知名度就够比特走很多年了。除非有个突破性技术。以太貌似有个突破,性能实在太LOW。其它各种山寨在这波大浪退去后全部玩完。可以参照90年代的互联网。
闪电和RSK可能是下一代技术。也可能不是。这个需要考验。

比特币交易拥堵太闹心?试试这些方法吧

近年来,比特币网络中的交易量呈稳步上涨趋势。这也就意味着越来越多的区块存在堵塞现象。因为交易不能立刻在区块链中广播,矿工的内存池(相当于“交易排队”)积压了大量的订单。
矿工更偏向于优先处理区块中手续费设置较高的交易。而那些手续费较低的交易必须在所谓的“自由市场”中进行费用的再调整,在下一个区块生成之前,暂时存在矿工的内存池里。如果调整后的费用仍然低于其它交易的出价,那么就得交易的确认就得继续推迟。
这种情况会影响用户体验。手续费设置较低的交易确认时间可能是数个小时、数天,甚至根本不会被确认。
以下几点措施能够有效缓解交易卡顿现象。

交易发送之前

比特币诞生之初,大部分钱包都设置了固定的交易手续费,基本上在0.1 mBTC左右。当时,由于矿工挖出的区块空间较大,他们通常都不会拒绝确认交易(事实上,就算低于最低标准的交易或没有手续费的交易也能得到确认)。
随着区块空间的不断减少,0.1 mBTC的固定手续费已经不能满足矿工的需求。他们开始以费用高低选择确认次序,手续费的调整也因此出现。不过当时就算手续费再低的交易最终也能得到确认,但是要等上一会。
提高手续费
如果你希望加快交易确认时间,最直接的解决方案就是提高手续费。
如果你的钱包(在默认情况下)固定手续费比较低,你可以进行手动调整,直接进行钱包设置或者在发送交易时进行设置(或者同时设置)。
21.co等网站能够实时监控网络情况,针对不同的交易金额给出最适合的手续费,还能告诉你各个手续费标准对应的交易确认时间。
钱包的动态费用功能
目前,大多数钱包都支持动态费用调整。基于比特币网络的数据,钱包能够自动预估并为用户调整到下一区块所需的手续费标准。
有些钱包还会让用户选择费用的优先级。当然了,较高的手续费能够保证更快地确认,而低手续费的交易则需要等上一段时间。
如果你钱包中的交易在高峰时期经常出现延迟现象,并且无法进行费用调整,那么你的钱包可能需要更新版本,或者你可以换一个新的钱包。
换新的钱包
如果你决定换一个新的钱包,那么肯定要进行资金的转移。要是你不太着急,也不介意付点手续费,可以通过比特币网络发送资金。就算手续费很低也能成功。
要是情况比较紧急,可以在旧钱包输出你的私钥或私钥种子(seed),然后输入到新的钱包中。这样就不会在比特币网络中产生交易。你也能直接开始自己的交易。

交易发送之后

如果你的交易在发送之后卡在了网络中,那么你可以选择“插队”。
费用替代法
要想插队成功,最简单的方法就是Opt-In Replace-by-Fee(Opt-In RBF,也可称为选择性加入费用替代法)。有了这种方法,你可以调整手续费,并进行交易的再发送。
在大多数情况下,同一笔交易如果进行了再次发送,就算手续费调高了,新的交易也不会被承认。比特币节点通常会将这笔新的交易视为双花(double spend),因此不会进行确认及广播。
但有了Opt-In RBF之后,你在发送交易时网络节点已经明确知道你可能会调整手续费进行再发送。因此,大多数比特币节点都比较接受第二次发出的交易,并且允许这笔新交易插队。
至于新交易是否能写入下一区块则取决于矿工:并不是所有矿工都支持Opt-In RBF。不过,只要支持Opt-In RBF的矿工足够多,你的交易确认时间也不会延迟太久。
目前支持Opt-In RBF的钱包有两个:Electrum和GreenAddress。在发送交易之前,你可能先要在钱包菜单栏中开启这一功能。
父子支付方案
要是你的钱包不支持Opt-In RBF,那么情况就有点复杂了。
父子支付方案(CPFP,Child Pays for Parent)是一个可行的选择。CPFP能够保证矿工不去优先选择手续费最高的交易,而是选择合并手续费最高的一系列交易。
简单来说,有了CPFP之后,大部分交易不仅会把交易发给接收者,还会给你“找零”。你可以在后续交易中花掉这部分“零钱”。
有些钱包甚至允许你在交易未确认之前使用这笔零钱,这样你就可以在新一轮交易中把零钱发给自己。然后你可以调高手续费,以此来补足上一笔交易的费用。矿工会衡量你发出的一系列交易的总费用来进行确认。
如果你的钱包不能自主选择比特币支出(也就是说,你不能优先选择发送未确认的零钱),那么你可以选择发送钱包中所有的资金,这样这笔零钱就包含在里面了。
和Opt-In RBF一样,并不是所有矿工都支持CPFP的。不过,只要支持CPFP的矿工足够多,你的交易确认时间也不会延迟太久。
或者……
如果Opt-In RBF和CPFP都不可行,还有一个办法。你可以直接进行交易的再发送,并附上较高的手续费。这种方法称为“full replace-by-fee”(完全费用替代法)。有些矿工会接受这种方式,但目前所有钱包都不存在这个功能。
这种方法产生的结果只有两个:等待交易确认或者等待比特币退回到钱包。请注意,交易确认之前,比特币其实还在你的钱包里——只不过是以你不可见的方式存在的。其实比特币是不会“卡在”网络中的,因此不可能存在丢失现象。

作为收款方

如果你只是收款方,交易仍然有拥堵的可能。
如果你的钱包支持发送未确认的交易,你同样可以选择CPFP。和上文提到的一样,你可以重新发送未确认的交易,只不过可以把收款人换做你自己。要是新设置的手续费仍然不够高,那你就只能再等上几个区块的时间了。
或者你可以让发送方采用Opt-In RBF,重新设置手续费。

技术加速已经发出的比特币交易

最近比特币网络爆肚(个人比较喜欢),大量手续费少的交易被滞留不能及时确认。
这里不介绍viaBTC的免费加速(需要手续费不低于0.0001才给加速处理),也不说BTC.COM的付费加速,重点谈谈个人怎么自己加速已经发出去的比特币交易。当然,代价不是免费的,需要自己增加手续费。
首先,理论上一个交易被发出后是不能被收回的,也没有交易过期的说法(有3天过期的说法,经过本人测试,不成立,全节点可以设置72小时过期,但是还是有没设置过期时间的节点继续广播之前的交易,所以会被重新加入到其他节点)。
1、有些矿池提供交易加速功能,其实是你提交交易ID,矿池收录后,当自己挖到一个块后,人为把你之前低费用的交易加入这个块中,如果矿池挖不到新块,就不可能加速确认你的交易。矿池通常选择收取一些额外的费用或者手续费至少不少于某个特定费用。
2、Opt-in Replace-by-Fee (RBF)。在electrum等钱包软件中,发送比特币的时候有一个选项:replaceable,如果你想侥幸用一个低手续费发送交易,不行再追加,可以在发送的时候选中这个选项。这样发送后,如果迟迟不能确认,选择在钱包已经发送还没确认的交易,点击右键,直接有追加费用的选项,增加费用后可以更快被确认;
3、Child Pays For Parent (CPFP) 。通常是比特币接收方实现。这个不是软件的选项,而是想加速之前的一个交易A,需要发起一个新的交易B,把原来A的接收作为新交易的输入,同时适当提高B的手续费。支持CPFP的矿工(bitcoin 0.13以上)当看到一个子交易有很好的手续费想收录进区块的时候,必须把父交易一起收录,因为没有父交易,子交易是不成立的,矿工没办法在不接受父交易的情况下接受子交易,实现了加速父交易的目的;
4、双重支付的思路。有人认为CPFP也可以由父交易的发送方发起,其实我个人认为如果这样,就是类似双重支付(双花)的意思了,当然不是真正的双花,比特币是坚决不能双花的。具体做法是:用热钱包(不要bitcoin core这样的全节点钱包)类似electrum这种把之前的交易重新发一次,这类钱包发送交易的时候会根据本地钱包状态并查询网上全节点数据判断发送地址中是否有可以发送的比特币数量,在配置中可以配置不同的全节点的网站。有人说不可能重发,这就是为什么要用热钱包的原因,有些节点由于设置了交易最低矿工费用,不接收你之前发送的交易,所以用热钱包连接这样的节点,就查询不到你之前发送的交易,就可以再次发送。而新的交易费用高,很快被区块收录确认,老交易被认为是双花,直接被从mempool中清除。但这里有个问题,如果从A发给B,A有10个币,先发给B5个币,交易费少没有被确认,然后你在从A发5个币到B,结果很可能是把另外5个币发给了B,所以是你总共给B发了10个币,不是同样的5个币发了2次。这个如果理解UTXO的就明白,没法多解释了。如果A只有5个币都发给了B,再次发送5个币就不会有问题,看具体情况。如果真的是A有10个币的情况,建议用钱包的命令行方式发送,可以选择UTXO。

OTC场外交易发布广告时价格如何填写才合理?

USDT兑换人民币的价格是OTC交易价格的成本因素。那么发布广告时如何填写溢价才是包涵成本因素的合理价格?
广告溢价=USDT价格/USD汇率±买卖系数;目前溢价应在10%~16%之间较合理。发布广告或持有广告的用户要关注USDT的价格变化,以免成本提高了,在交易时产生价差损失。
备注:手续费是平台收取的费用,不管是撮合还是OTC,都是比较低的,一般是千分之几。OTC交易中的溢价是个人赚取的利差,目前主要表现在USDT上面,因为当前获得USDT的渠道比较困难,导致USDT的商家掌握了相对的定价权,从而导致场外交易如比特币,以太坊等币种的价格成本上涨。

EOS技术白皮书

EOS.IO技术白皮书
作者:block.one
2017年6月26号
本中文白皮书翻译自EOS白皮书英文版,如果有表述不一致的地方,以英文版本为准。
摘要
EOS.IO软件引入了一种新的块链架构,旨在实现分布式应用的性能扩展。这是通过创建一个可以构建应用程序的类似操作系统的架构来实现的。该软件架构提供帐户,身份验证,数据库,异步通信以及在数以百计的CPU或群集上的程序调度。该技术的最终形式是一个块链体系架构,该区块链每秒可以支持数百万个交易,同时普通用户无需支付使用费用。
1. 背景
Blockchain技术源于2008年推出的比特币,自那时以来,企业家和开发人员一直在努力推广该技术,以便在单个块链平台上支持更广泛的应用。
虽然一些通用区块链平台还在努力实现第一个能正常运行的区块链应用,针对特定场景的区块链应用诸如BitShares去中心化交易所(2014)和Steem社交媒体平台(2016)已经成为日活跃用户上万的成功应用。 这两个应用成功的把性能提高到每秒数千个交易,延迟降低到1.5秒,降低交易费用,并实现了与中央服务器方案相似的用户体验。
由于现有的块链平台使用费用高昂,性能有限,阻碍了区块链应用的广泛传播。
2. 区块链应用的要求
成为一个成功的区块链应用平台块,应该需要满足以下要求:
支持百万级别用户
如Ebay,Uber,AirBnB和Facebook这样的应用,需要能够处理数千万日活跃用户的区块链技术。 在某些情况下,应用程序可能无法正常工作,除非达到了大量用户,因此可以处理大量用户数量的平台至关重要。
免费使用
有时候应用开发人员需要灵活的为用户提供免费服务; 用户不必为了使用平台而付出费用。可以免费使用的块链平台自然可能会得到更多的关注。有了足够的用户规模,开发者和企业可以创建对应的盈利模式。
轻松升级和Bug恢复
基于块链的应用程序在进行功能迭代的时候自然需要能支持软件升级。所有软件都有可能受到bug的影响。一个区块链底层平台在遭遇bug的时候,需要能够从bug中修复错误。
低延迟
及时的反馈是良好用户体验的基础。延迟时间如果超过了几秒钟,会大大影响用户体验,严重降低程序的竞争力。
串行性能
有些应用程序由于命令执行必须是顺序的,从而无法用并行算法进行实现。诸如交易所之类的应用经常需要处理大量的串行操作,因此一个成功的区块链架构需要具有强大的串行性能。
并行性能
大规模应用程序需要在多个CPU和计算机之间划分工作负载。
3. 共识算法(DPOS)
EOS.IO软件架构中采用目前为止唯一能够复合上述性能要求的区块链共识算(DPOS)。根据这种算法,全网持有代币的人可以通过投票系统来选择区块生产者,一旦当选任何人都可以参与区块的生产。
EOS.IO里预计每3秒生产一个区块。任何时刻,只有一个生产者被授权产生区块。如果在某个时间内没有成功出块,则跳过该块。
EOS.IO架构中区块产生是以21个区块为一个周期。在每个出块周期开始时,21个区块生产者会被投票选出。前20名出块者首选自动选出,第21个出块者按所得投票数目对应概率选出。所选择的生产者会根据从块时间导出的伪随机数进行混合。以便保证出块者之间的连接尽量平衡。
如果出块者错过了一个块,并且在最近24小时内没有产生任何块,则这个出块者将被删除。这确保了网络的顺利运行。
在正常情况下,DPOS块链不会经历任何叉,因为块生产者合作生产区块而不是竞争。如果有区块分叉,共识将自动切换到最长的链条。具有更多生产者的区块链长度将比具有较少生产者的区块链增长速度更快。此外,没有块生产者应该同时在两个区块链分叉上生产块。如果一个块生产者发现这么做了,就可能被投票出局。
交易确认
由DPOS共识算法维护的区块链一般出块者都是100%在线的。这就是说一个交易平均1.5秒后,会被写入区块链中,同时被所有出块节点知晓这笔交易。这就意味着只需要1.5秒,一笔交易可以认定为99.9%被区块链接收了。
有一些非常情况下例如,软件bug,Internet拥塞或恶意出块者出现,区块链可能出现分叉。为了确保一个交易是不可逆转的,可以等待15个区块确认。根据EOS.IO软件的配置,在正常情况下15个区块确认平均需要45秒。
在分叉产生的9秒钟内,出块节点就可能发现这个分叉可能并警告用户。一个节点观察网络的时候如果发现连续2次的丢块事件,这意味着改节点由95%可能性在区块链的分叉分支上。有出现3个连续的丢块以后,该节点有99%的可能性在一条分叉出来的区块链上。可以生成一个预测模型,它将利用节点丢失的信息,最近的参与率以及其他因素来快速地警告用户出现什么问题。
对这种警告的反应完全取决于业务交易的性质,但最简单的反应是等待15/21确认,直到警告停止。
交易证明(TaPoS)
EOS.IO软件要求每个交易都包括最近的区块头的哈西。 这个哈希有两个目的:
1.防止分叉区块链上出现大量交易记录;
2.使得系统能感知到用户是否在分叉出来的区块链上
随着时间的推移,所有用户最终直接确认块链,这使得难以伪造假冒链,因为假冒将无法从合法链路迁移交易。
4. 帐户
EOS.IO软件允许使用唯一的长度为2到32个字符的可读的名称来实现对帐户的引用。该名称由帐户的创建者自行选择。所有帐户必须在创建时必须充入最小的帐户余额以支付存储帐户数据的费用。帐户名称还支持命名空间,因此帐户@domain的所有者是唯一可以创建帐户@user.domain的用户。
在去中心化的情况下,应用程序开发人员将支付创建帐户名义上的成本以注册新用户。通常企业已经以广告和免费服务等形式为获取每个客户花费了大量资金。相比之下,创建新的区块链帐户所需的资金成本是微不足道的。并且幸运的是,没有必要为已经由另一个应用程序注册的用户创建帐户。
消息和消息处理程序
每个帐户可以将结构化消息发送到其他帐户,并且可以定义消息被接受后的处理脚本。EOS.IO软件为每个帐户提供其自己独有的数据库,只能由自己的消息处理程序访问。消息处理脚本还可以向其他帐户发送消息。消息和自动的消息处理程序的组合正是EOS.IO定义智能合约的方式。
基于角色的权限管理
权限管理主要涉及明确特定的消息是否被正确授权。权限管理的最简单形式是检查事务是否具有所需的签名,但这隐含着所需的签名是已知的。通常权力是与可以分类的个人或个人群组绑定在一起的。EOS.IO软件提供了一个声明式权限管理系统,可以让帐户细粒度和高级别地控制谁在何时能够做什么。
至关重要的是,身份认证和权限管理被标准化实现,并与应用程序的业务逻辑分离。这使得开发某种工具以通用方式管理权限成为可能,并为性能优化提供了巨大的空间。
每个帐户都可以通过其他帐户和私钥的任何加权组合来控制。这种机制创建了一个能够真实反映权限在现实中的组织情况的层次化权限结构,并使得多用户对资金的控制比以往任何时候都更容易。多用户控制是提升安全性的最重要因素,如果能正确地使用,可以极大地消除黑客盗窃的风险。
EOS.IO软件允许帐户可以定义与其他帐户密钥的“and”和“or”的组合,并且把这个组合以将特定类型的消息发送到另一个帐户。例如,可以为用户的社交媒体帐号提供一个密钥,另一个用于交易。甚至用户可以给予其他帐户许可让其代表自己的帐户行事,而无需向其他帐户分配密钥。
命名权限级别
使用EOS.IO软件,帐户可以定义命名权限级别,每个权限级别可以从更高级别的命名权限派生。每个命名权限级别定义一个权力,这个权力可以是其他帐户的密钥和(/或)命名权限级别组成的多签名检查的阈值。例如,帐户的“朋友”权限级别可以设置为帐户能被其任何朋友帐户平等地控制。

另一个例子是Steem区块链,其具有三个硬编码命名的权限别:owner,active和posting。Posting权限只能执行诸如投票和发布等社交行为,而active权限可以做除了更改所有者的所有事情。owner权限实质是被保留了起来,它能够做所有一切。EOS.IO通过允许每个帐户持有者定义自己的权限层次结构以及动作的分组来实现类似的管理理念。
命名消息处理程序组
EOS.IO软件允许每个帐户将自己的消息处理程序以命名嵌套的方式予以组织。这些命名的消息处理程序组可以通过配置其权限级别被其他帐户引用。
最高级别的消息处理程序组是处理帐户名称的程序组,最低级别的消息处理程序组是处理该帐户正在接收的单独消息类型的程序组。这些程序组的引用格式为:@accountname.groupa.subgroupb.MessageType。
在这种模式下,可以将创建和取消订单的交易合约与存取款的交易合约分离。这种交易合约的分组对用户使用交易合约提供了较大便利。
权限映射
EOS.IO软件允许每个帐户定义任何帐户的命名消息处理程序组与其自己的命名权限级别之间的映射。例如,账户持有人可以将账户持有人的社交媒体应用程序映射到帐户持有者的“朋友”权限组。通过此映射,帐户的任何朋友都可以和帐户持有者一样,在帐户的社交媒体上发布内容。即使他们将作为帐户持有者发布,他们仍然会使用自己的密钥来签名。这意味着总是可以辨别出来哪些朋友以何种方式使用了其帐户。
权限评估
当从@alice到@bob传送“Action”类型的消息时,EOS.IO软件将首先检查@alice是否为@bob.groupa.subgroup.Action定义了权限映射。如果没有找到任何结果,那么将会检查@bob.groupa.subgroup,然后是@bob.groupa,最后是@bob的映射。如果此时仍然没有找到匹配的结果,那么假定的映射将是命名的权限组@alice.active。
一旦识别出权限映射,则启动多签名阈值校验过程。如果校验成功,所命名的权限将与关联的权限建立关联。如果失败,那么它会遍历父权限,最终遍历到其所有者的权限@alice.owner。

默认权限组
该技术还允许所有帐户都有一个可以做所有事情的“owner”权限组,和一个除了更改所有者组之外可以执行所有操作的“active”权限组。所有其他权限组均派生自“active”权限组。
权限的并行评估
权限评估是个“只读”的过程,即使在事务过程中对权限进行了修改,在运行到区块结尾时这种修改也会失效。首先,这意味着所有事务的所有密钥和权限评估可以并行执行。其次,这种机制意味着可以快速验证权限,而不需要考虑启动可能回滚的昂贵的应用程序逻辑。最后,这意味着当挂起的事务继续执行时,事务权限的评估可以继续执行,而无需重新执行。
这么设计考虑的主要原因,是因为权限验证占据交易验证的很大计算量比例。使之成为一个只读和可并行化的过程,可以显着提高性能。
当区块链消息被重放,来从消息日志中重新生成确定状态时,并不需要再次评估权限。事务被包含在一个已知的状态良好的区块中的事实使其可以跳过这个步骤。这极大地减少了重放之前的区块链数据相关的计算量。
有强制延迟的消息
时间是安全的关键组成部分。在大多数情况下,在私钥被使用前不可能知道其是否已经被盗用。基于时间的安全机制在人们使用一些特殊类型应用程序时更为关键,这些应用程序需要将密钥保存在连接到互联网的人们日常使用的计算机上。EOS.IO软件支持应用程序开发者指定某些消息在包含在区块后,实际应用之前必须等待一段比较小的时间段。在此期间,这些消息可以被取消。
当这类消息被广播时,用户可以通过电子邮件或短信收到相应通知。如果他们不授权该消息,那么他们可以登录其帐户来还原帐户数据并撤回消息。
 
所需的延迟取决于操作的重要程度。支付一杯咖啡可以毫不拖延地在几秒钟内确认,而买房子可能需要72小时清算周期。将整个帐户转移到新的控制者手上可能最多需要30天。具体延迟的选择取决于应用程序开发者和用户。
 
密钥被盗后的恢复
EOS.IO软件为用户提供了一种在密钥被盗时恢复其帐户控制的方法。
帐户所有者可以使用在过去30天内活动的任何其批准的帐户恢复合作伙伴的密钥,在其帐户恢复合作伙伴的允许后,重置其帐户上的所有者密钥。在没有帐户所有者的配合情况下,帐户恢复合作伙伴无法重置其帐户的控制权。
 
对于攻击帐户的黑客而言,由于其已经“控制”该帐户,因此尝试执行恢复过程没有任何收获。此外,如果他们的确进行恢复的过程,那么恢复合作伙伴可能需要身份认证和多因素认证(如电话和电子邮件)。这或者会暴露黑客的身份,或者黑客在恢复过程中毫无所得。
 
这个过程与简单的多重签名机制有极大的不同。通过多重签名的交易,会有一个对象会执行并参与每一个交易;而通过恢复过程,恢复过程的操作者仅参与了恢复的过程,并没有权力参与日常的交易。这极大降低了相关参与者的成本和法律责任。
5. 应用程序的确定性并行执行
 
区块链共识取决于确定性(可重现)行为。这意味着所有并行执行都能不能使用互斥体或其他锁的原语的情况下正常运行。没有锁,必须有一些方法来保证所有帐户只能读写自己的私有数据库。这也意味着每个帐户会顺序处理其消息,并行性确定在帐户级别。
 
使用EOS.IO软件,区块生成器的工作是将消息传递到独立的线程中,以便它们可以并行地评估。每个帐户的状态只取决于传递给它的消息。调度表是区块生成器的输出,并且将被确定性地执行,但是生成调度的过程不必是确定性的。这意味着区块生成器可以利用并行算法来调度事务。
 
并行执行还意味着当脚本生成新消息时,它不会立即发送,而是在下一个周期中发送它。无法立即发送的原因是因为接收方可能会在另一个线程中主动修改自己的状态。
 
通信延迟优化
延迟时间是一个帐户将消息发送到另一个帐户并收到响应所需的时间。EOS.IO软件的目标是使两个帐户能够在单个区块内来回交换消息,而不必在每个消息之间等待3秒。为了实现这一点,EOS.IO软件将每个区块分为周期(cycle)。每个周期分为线程(thread),每个线程包含事务列表。每个事务包含一组要传递的消息。该结构可以被可视化为树,其中各层依据其特性被顺序或者并行地进行处理。
 
区块Block
 
周期Cycles(顺序)
 
线程Threads(并行)
 
交易Transactions(顺序)
 
消息Messages(顺序)
 
接收方和通知的帐户Receiver and Notified Accounts(并行)
 
在一个周期中生成的交易可以在任何后续周期或区块中传送。区块生成器将不断把周期添加到区块中,直到最长的区块时间间隔达到,或者没有新的可传送交易生成。
 
可以使用区块的静态分析来验证在给定周期内是否存在两个线程包含修改同一个帐户的事务。只要这种静态分析机制一直起作用,就可以通过并行运行所有线程来处理区块。
 
只读消息处理
部分账户可能会处理一些只需要决定通过与否的消息,而不会改变自己内在状态。这种情形下,只需要有一个或多个进程包含这个特殊账户下的只读消息处理器,这些处理就能并行进行。
 
多账户原子交易
有时,我们希望确保消息被多个帐户以原子方式交付和接受。在这种情况下,两个消息被放置在一个交易中,两个帐户将被分配相同的线程和消息按顺序执行。这种情况在性能上并不理想,并且当涉及到“付费”用户的使用时,他们将会被根据交易所涉及的特殊帐户的数量来收费。
 
出于性能和费用的考虑,最好将涉及两个或更多帐户的原子操作最小化
 
部分区块链状态评估
大规模区块链技术组件应该是模块化的。每个人都不应该运行所有东西,特别是如果他们只需要使用一小部分应用程序的时候。
 
出于将交易状态显示给用户的目的,交易应用的开发者将维护一个完整的节点。这款交易应用不需要与其他社交媒体应用关联状态。EOS.IO系统允许任何完整的节点选择性的运行任意应用子集。传递给其他应用的消息将被安全地忽略,因为应用的状态完全来自于传递给它的消息。
 
这对于多帐户之间的通信有一些重要的影响。最重要的是,不能假定另一个帐户的状态在同一台机器上是可访问的。它还意味着,虽然允许一个帐户同步调用另一个帐户的“锁”是一种诱人的设计模式,但如果其他帐户不在内存中,这种设计模式将会崩溃。
 
因此,所有帐户间的状态通信必须通过区块链上的消息进行传递。
 
自主最优任务安排
EOS.IO系统不能强制阻止区块生成者向其他帐户发送的任何消息。每个区块的生成者对处理交易的计算复杂度和时间复杂度都有自己的主观度量,无论这个交易是由用户生成的还是由脚本自动生成的。
 
在网络层面,EOS.IO系统处理的每一笔交易都有固定的计算带宽成本,不管它是耗费01ms还是10 ms来处理它。但是,使用该系统的每个单独的区块生成者会使用它们自己的算法和度量来衡量资源使用。当一个区块生成者发现一个交易或帐户已经消耗了大量的计算能力时,他们会在生成自己的块时拒绝该交易;但是,如果其他区块生成者认为它是有效的,他们仍然会处理该交易。
 
一般来说,只要一个区块生成者认为一个交易是有效的,并且所消耗的资源是可控的,那么其他所有的区块生成者也会接受它,但可能要花费1分钟才能使该交易传播到这个区块生成者处。
 
在某些情况下,区块生成者可以创建一个区块,其中包括在可接受范围之外的交易。在这种情况下,下一个区块生成者可能会选择拒绝这个区块,而这条线路将会被第三个区块生成者终结。这与一个大区块导致网络传播延迟所引发的情况没有什么不同。社区会注意到这种异常模式,并最终清理该流氓区块生成者的选票。
 
这种对计算、资源成本的主观评估将使区块链不必精确地去度量运行一个任务需要多长时间。有了这个设计,就不需要精确地数指令,这将极大地增加优化的机会,而不会打破共识。
6. 令牌模型和资源使用
 
所有的区块链都是资源受限的,并且需要一个系统来防止滥用。在EOS.IO系统中,有三大类资源被应用程序消耗:
 
1.带宽和日志存储(磁盘);
2.计算和计算积压(CPU);
3.状态存储器(RAM)。
 
瞬时使用和长期使用的这两类组件都会消耗带宽和计算。区块链系统将维护所有消息的日志,这些日志将会被所有的完整节点下载和存储。通过日志信息,可以重构所有应用程序的状态。
 
可计债务是指通过对消息日志重新生成状态的计算消耗。如果可技债务增长太大,就有必要对区块链的当前状态进行拍照,并抛弃区块链的历史状态。如果计算债务增长过快,区块链将使用6个月的时间来重放1年的交易。因此,对可计债务进行精心管理是至关重要的。
 
区块链存储的状态指那些可从应用程序逻辑访问的信息。它包括诸如订单和帐户余额等信息。如果应用程序不读取该状态,则不应该存储它。例如,博客文章的内容和注释不被应用程序逻辑读取,因此它们不应该存储在区块链的状态中。与此同时,邮件或评论的索引、投票数和其他属性将作为区块链状态的一部分被存储起来。
 
区块生成者可以发布它们可用的带宽、计算资源和状态的容量。EOS.IO系统允许每个帐户在一个3天对赌合约中消耗一定比例的可用容量。例如,假设一个基于EOS.IO系统的区块链应用启动,如果一个帐户持有该区块链提供的总令牌的1%,那么这个帐户就有可利用该区块链1%的状态存储容量。
 
使用EOS.IO系统,带宽和计算能力将被分配到部分储备基础中,因为它们是短暂的(未使用的容量不能存储下来为将来使用)。EOS. IO系统将使用类似于Steem的算法来限制带宽使用速率。
 
目标和主观度量
正如前面所讨论的,可度量计算的使用对性能和优化有很大的影响;因此,所有资源的使用限制最终都是主观的,并且根据各自的算法和估计来执行。
 
也就是说,从客观角度来说,有些事情是微不足道的。站在客观的角度,传递的消息数量和存储在内部数据库中的数据的大小都是很便宜的。EOS.IO系统允许区块生成者能够在这些客观度量上应用相同的算法,但是也可以在主观度量上选择更严格的主观算法。
 
接收方支付
传统上,它是用来支付办公空间、计算电力以及运营业务所需的其他费用的业务。客户从该业务中购买特定产品,而这些产品的销售收入将用于支付业务成本。同样,没有任何网站要求访问者为维护服务器而支付小额费用。因此,分散的应用程序不应该强迫它的客户直接为使用区块链支付费用。
 
EOS.IO系统不要求用户直接向区块链支付,因此不限制或阻止企业确定其产品的货币化策略。
 
授权能力
如果一个区块链是使用EOS.IO系统开发的,而其令牌是由一个持票人持有,他可能不需要立即消耗全部或部分可用带宽,这样的持有者可以选择将未消耗的带宽给予或租给他人;使用EOS.IO 系统的区块生成者将识别这样的授权并直接分配相应的带宽。
 
将交易成本与令牌价值分开
EOS.IO系统的主要优点之一是,应用程序可用的带宽完全独立于任何令牌价格。如果应用程序所有者持有相应数量的令牌,那么应用程序可以在固定的状态和带宽使用中持续运行。开发人员和用户不会受到令牌市场价格波动的影响,因此不会依赖于价格。EOS.IO系统运行区块生成者能够自然地增加带宽、计算资源和每个令牌的可用性,这与令牌的价值无关。
 
EOS.IO系统将奖励那些生成了区块的区块生成者一定的令牌。令牌的值将影响一个区块生成者能够购买的带宽、存储和计算量;这个模型自然会利用上升的令牌价值来提高网络性能。
 
状态存储成本
因为带宽和计算资源可以被委托,因此应用程序状态的存储要求应用的开发者持有令牌直到该状态被删除。如果状态不被删除,那么令牌将被有效地从循环中删除。
 
每个用户帐户需要一定数量的存储空间;因此,每个帐户必须保持最低余额。随着网络存储容量的增加,最低余额的要求将会下降。
 
 
块奖励
每次生成一个块时,EOS.IO系统都会奖励该区块生成者一个新的令牌。所创建的令牌数量由所有区块生成者所公布的期望报酬的中位数决定。EOS.IO系统可能被配置为限制区块生成者所得奖励上限,这样,令牌供应的年总增长不超过5%。
 
社区福利应用
除了加入以EOS.IO系统为基础的区块生成者团队,用户还可以选择3个社区福利应用,也称为智能合约。这3个应用程序最多能按配置的比例接收到每年的令牌配额减去已支付给区块生成者的部分。这些智能合约将根据每个应用程序从令牌持有者收到的选票比例来收取令牌。经选举的应用程序或智能合约可以由新当选的应用程序或令牌持有人的智能合约所替代。
 
7. 治理
 
治理是人们在主观问题上达成共识的过程,而这些问题不可能完全被软件算法所捕获。EOS.IO系统实现了一个治理过程,有效地影响到现有的区块生产商。在被定义治理流程之外,之前的区块链依赖于临时的、非正式的、经常有争议的治理过程,从而导致不可预知的结果。
 
EOS.IO系统认识到,治理权力源来自于将权力代理给区块生成者的令牌持有者。区块的生成者被给予有限的和被监督的权限来冻结帐户,更新有缺陷的应用程序,并提出对底层协议的变更。
 
EOS.IO系统的一部分是区块生成者的选举。在对区块链进行任何更改之前,这些区块生成者必须批准它。如果区块生成者拒绝做出让令牌持有人所期望的改变,那么他们可以被投票否决。如果区块生成者未经令牌持有者允许进行更改,那么所有其他非生产的全节点验证器(交换器等)将拒绝更改。
 
冻结账户
有时,智能合约的行为会发生异常或不可预知,无法按照预期执行;有时应用程序或帐户可能发现一个漏洞,使其消耗不合理的资源。当此类问题不可避免地发生时,区块生成者应当有能力纠正这种情况。
 
所有区块链的区块生成者有权选择哪些交易被包含在区块中,从而使他们有冻结帐户的能力。EOS.IO系统通过冻结一个帐户到17 / 21活跃区块生成者的投票结论中,使这一授权成为正式结论。如果生成者滥用权力,他们可以被淘汰,账户将被解冻。
 
改变帐户代码
当其他一切都失败了,而“不可阻挡的应用程序”以一种不可预知的方式运行时,EOS.IO系统允许区块生成者在不需要硬分叉整个区块链的情况下替换帐户的代码。与冻结帐户的过程类似,此代码的替换需要17 / 21被选中的区块生成者的投票。
 
宪法
EOS操作系统可以用区块链技术在签名用户之间建立P2P服务协议或约束性合约,也就是所谓的“宪法”。宪法内容定义了仅依靠代码无法完全执行的用户间义务,同时结合相互间的公认规则,确立司法权和适用法律。每一个在网络中签名广播的交易,其签名信息中必须包含宪法的哈希值,以明确约束合约签名者。
 
宪法还定义了源代码协议的人类可读性intent(意图)。当出现系统错误时,intent(意图)可用来区分这个错误是bug还是系统特性,并且判断社区对此的修复措施是否正确。
 
升级协议和宪法
EOS操作系统使用源代码定义宪法和协议,同时也定义了宪法及协议的更新方法。对宪法或协议进行变更,需要完成以下步骤:
1.区块生产者(译注:miner/delegate/witness,因此没有译作矿工)提交一个宪法变更动议,并获得17/21以上的赞成票;
2.区块生产者将17/21以上的赞成票维持连续30天;
3.要求所有用户都使用新宪法的哈希值确认交易;
4.区块生产者采用修改源代码的方式反映宪法变更,使用git提交的哈希值将变更提交到区块链上;
5.区块生产者继续将17/21以上的赞成票维持连续30天;
6.变更的代码7天后生效,源代码修改通过后,将有1周的时间来对所有节点的进行升级;
7.所有没有升级为新代码的节点将自动关闭。
 
根据EOS操作系统的默认配置,更新区块链来添加新功能这一进程需要2到3个月时间,而修复那些不需要更改宪法的非关键性漏洞需要1到2个月时间。
 
 
紧急变更
面临一个损害用户利益的有害漏洞或安全漏洞时,区块生产者可以加速宪法变更过程。一般来说,加速新特性更新过程或修复无害漏洞,都是违反宪法的行为。
 
8. 脚本&虚拟机
 
EOS操作系统将首先作为一个传递账户间已认证信息的平台。脚本语言和虚拟机的实现将独立于EOS操作系统技术,任何开发语言或虚拟机,只要有适当的、性能足够的沙箱,都可以通过API与EOS集成在一起。
 
模式定义的消息
在账户之间发送的所有消息都是由区块链共识状态的一个模式定义的,该架构允许消息在二进制和JSON格式之间的无缝转换。
 
模式定义的数据库
数据库状态也使用类似的模式定义,这确保所有应用程序存储的数据都以一种格式呈现,同时具备JSON的人类可读性,以及二进制格式的高效率存储和易操作性。
 
将身份验证与应用程序分离
为了最大化并行运算,同时将从程序日志中重新生成应用程序状态的计算任务降至最低,EOS操作系统将验证逻辑分为三个部分:
 
1.确认消息在内部是一致的;
2.确认所有的前置条件都是有效的;
3.修改应用程序状态。
 
验证消息的内部一致性是只读的,不需要访问区块链状态,这意味着它可以最大化并行运算来执行。验证前置条件(例如需求平衡)也是只读的,因此也可以从并行运算中获益。只有对应用程序状态进行修改才需要写访问,并且需要按顺序对每个应用程序进行处理。
 
身份验证是验证消息是否可以应用的只读过程,应用程序实际上就是在做这项工作。实时的计算都需要执行,但交易一旦被包含在区块链中,就不再需要执行身份验证操作了。
 
虚拟机独立架构
这是EOS操作系统软件的目的是可以支持多种虚拟机,同时可以随着时间推移持续按需求增加新的虚拟机。出于这个原因,本文不会讨论任何特定语言或虚拟机的细节,但即便如此,目前也已经有三种虚拟机正在评估接入EOS系统。
 
Wren
Wren(http://wren.io)是一种小型的、快速的、基于类别的编程语言。Wren的开发人员将其描述为“就像是把小型tak文件装进lua大小的软件包,再加上一点Erlang特性,再包进一个熟悉的、现代的语法里面”。之所以选择Wren语言和虚拟机,是因为它的短小精悍、易于文档记录和理解的代码库。它还具有非常好的性能,并且可以很容易地嵌入C++应用程序中。
 
 
Web组件(WASM)
WASM是构建高性能Web应用程序的新兴Web标准,通过少量适配就可以被明确定义和沙箱化。WASM的好处在于业界广泛支持,因此可以用熟悉的语言开发开发智能合约,例如C或C++。
 
以太发人员已经开始适配WASM,以提供适当的沙箱并使用以太坊WASM定义(https://github.com/ewasm/design)。这种方法很容易改编后用于EOS系统软件集成。
 
以太虚拟机(EVM)
这个虚拟机已经被用于大多数现有的智能合约,并且可以在EOS系统区块链上使用。可以想象,在EOS操作系统区块链上,EVM合约可以在内部沙箱中运行,只需要少量适配就可以与其他EOS应用程序交互。
 
 
9. 跨链交互
 
EOS操作系统旨在促进区块链间的跨链交互,这是通过简化消息存在证明和消息序列证明来实现的。这些证明与围绕信息传送的应用架构设计相结合,同时可以隐藏跨链交互和验证的细节,避免向应用程序开发人员公开。

 
 
用于轻客户端验证的默克尔证明(LCV)
要更容易地与其他区块链集成,对于客户端而言最好是不需要处理全部的交易。毕竟,一个交易所关心的不过只是入账和出账操作。更进一步而言,一个更加理想的状态是,对于交易所自身所维持的链来说,如果可以将轻量级的默克尔存款证明应用其中,那么就不必完全依赖全节点矿工,全节点矿工同步时也能维持尽可能小的开销。
 
 
LCV的目标是能产生相对轻量级的交易存在证明,并且该证明能被其他人通过跟踪一个轻量级数据集进行验证。既然如此,目的就是证明一个特定的交易是被一个特定的区块包含其中,并且这个区块是被包含在已经验证的特定区块链历史中。
 
比特币的轻量级验证方式是,假设所有节点都有读取区块头数据完整记录的能力。而区块头数据每年增长4MB, 假设每秒产生10笔交易,一个有效的证明需要512 bytes,这对于一个出块时间为10分钟的区块链来说是可行的。但对于一个出块时间为3秒的区块链来说则远远不够。
 
EOS操作系统的轻量级证明只需要验证包含某个特定的不可逆交易之后的区块头数据,使用哈希链表架构(如下图),数据集可以保持在1024 bytes内,即可证明任何一个交易是否存在。这是基于验证节点保留着前一天的所有区块头数据(2 MB大小),然后证明这些交易只需要200 bytes大小的证明数据。
 
当生成区块时候使用合适的哈希链表时,使用这种方法只会带来很小的增量开销,这意味着没有理由不以这种方式去生成区块。
 
当与其他链验证证明的时候,时间、空间和带宽都有很大的优化空间。跟踪所有区块头数据(420 MB/年)可以使证明体积尽可能小。只跟踪最近的区块头可以使得在持久区块头数据保存体积以及证明体积之间获得平衡。同样的一个区块链可以“懒惰地”只记录过去数据的哈希值作为之前数据的证据,新证明只需要保留已知的sparse tree(稀疏树)结构,具体的方法会视乎于外部区块所占的默克尔证明所包含的交易比例。
 
在链与链之间经过一定密度的相互关联之后。他们将会变得越来越高效。一条链可能会包含另外一条链的全部历史记录,那么就不再需要互相证明。从性能的角度来说,这将极大地减少链间互相证明操作的频率。
 
 
跨链通信延迟
与其他区块链通信的时候,矿工必须等待其他区块链不可逆地确认之后才会接受其为有效的输入。使用EOS系统软件,凭借出块时间为秒的委任权益证明以及21个矿工,这大概只需要45秒的确认时间。如果某个链上的矿工不等到交易确认,就像一个交易所接受了一笔存款而后又撤销这笔操作,这会影响这条链共识的有效性。
 
完成证明
使用外部区块链的默克尔证明时,知道所有已处理的交易是有效的和知道有没有交易被忽略,这两者之间有巨大的不同。因为不可能证明所有最近交易是已知的,但有可能证明历史交易数据之间没有缺失。EOS操作系统通过分配一个顺序的标识编号给每一笔到达账户的信息来完成这个功能,用户可以使用这些标号来证明所有给这个账号的消息已经被处理并且是被按顺序处理的。
10. 结论
 
EOS操作系统是基于经过普遍证实、并通过长期实践考验的概念来设计的,代表着区块链技术的根本性进步。它是可扩展的全球性区块链社会的宏伟蓝图的一部分 ,分布式应用程序可以轻松地以此为环境开发和管理。

比特币白皮书:一种点对点的电子现金系统

原文作者:中本聪(Satoshi Nakamoto)

作者邮箱:Satoshin@gmx.com

[摘要]:本文提出了一种完全通过点对点技术实现的电子现金系统,它使得在线支付能够直接由一方发起并支付给另外一方,中间不需要通过任何的金融机构。虽然数字签名(Digital signatures)部分解决了这个问题,但是如果仍然需要第三方的支持才能防止双重支付(double-spending)的话,那么这种系统也就失去了存在的价值。我们(we)在此提出一种解决方案,使现金系统在点对点的环境下运行,并防止双重支付问题。该网络通过随机散列(hashing)对全部交易加上时间戳(timestamps),将它们合并入一个不断延伸的基于随机散列的工作量证明(proof-of-work)的链条作为交易记录,除非重新完成全部的工作量证明,形成的交易记录将不可更改。最长的链条不仅将作为被观察到的事件序列(sequence)的证明,而且被看做是来自CPU计算能力最大的池(pool)。只要大多数的CPU计算能力都没有打算合作起来对全网进行攻击,那么诚实的节点将会生成最长的、超过攻击者的链条。这个系统本身需要的基础设施非常少。信息尽最大努力在全网传播即可,节点(nodes)可以随时离开和重新加入网络,并将最长的工作量证明链条作为在该节点离线期间发生的交易的证明。

1. 简介

互联网上的贸易,几乎都需要借助金融机构作为可资信赖的第三方来处理电子支付信息。虽然这类系统在绝大多数情况下都运作良好,但是这类系统仍然内生性地受制于“基于信用的模式”(trust based model)的弱点。我们无法实现完全不可逆的交易,因为金融机构总是不可避免地会出面协调争端。而金融中介的存在,也会增加交易的成本,并且限制了实际可行的最小交易规模,也限制了日常的小额支付交易。并且潜在的损失还在于,很多商品和服务本身是无法退货的,如果缺乏不可逆的支付手段,互联网的贸易就大大受限。因为有潜在的退款的可能,就需要交易双方拥有信任。而商家也必须提防自己的客户,因此会向客户索取完全不必要的个人信息。而实际的商业行为中,一定比例的欺诈性客户也被认为是不可避免的,相关损失视作销售费用处理。而在使用物理现金的情况下,这些销售费用和支付问题上的不确定性却是可以避免的,因为此时没有第三方信用中介的存在。
所以,我们非常需要这样一种电子支付系统,它基于密码学原理而不基于信用,使得任何达成一致的双方,能够直接进行支付,从而不需要第三方中介的参与。杜绝回滚(reverse)支付交易的可能,这就可以保护特定的卖家免于欺诈;而对于想要保护买家的人来说,在此环境下设立通常的第三方担保机制也可谓轻松加愉快。在这篇论文中,我们(we)将提出一种通过点对点分布式的时间戳服务器来生成依照时间前后排列并加以记录的电子交易证明,从而解决双重支付问题。只要诚实的节点所控制的计算能力的总和,大于有合作关系的(cooperating)攻击者的计算能力的总和,该系统就是安全的。

2. 交易(Transactions)

我们定义,一枚电子货币(an electronic coin)是这样的一串数字签名:每一位所有者通过对前一次交易和下一位拥有者的公钥(Public key) 签署一个随机散列的数字签名,并将这个签名附加在这枚电子货币的末尾,电子货币就发送给了下一位所有者。而收款人通过对签名进行检验,就能够验证该链条的所有者。

1

该过程的问题在于,收款人将难以检验,之前的某位所有者,是否对这枚电子货币进行了双重支付。通常的解决方案,就是引入信得过的第三方权威,或者类似于造币厂(mint)的机构,来对每一笔交易进行检验,以防止双重支付。在每一笔交易结束后,这枚电子货币就要被造币厂回收,而造币厂将发行一枚新的电子货币;而只有造币厂直接发行的电子货币,才算作有效,这样就能够防止双重支付。可是该解决方案的问题在于,整个货币系统的命运完全依赖于运作造币厂的公司,因为每一笔交易都要经过该造币厂的确认,而该造币厂就好比是一家银行。
我们需要收款人有某种方法,能够确保之前的所有者没有对更早发生的交易实施签名。从逻辑上看,为了达到目的,实际上我们需要关注的只是于本交易之前发生的交易,而不需要关注这笔交易发生之后是否会有双重支付的尝试。为了确保某一次交易是不存在的,那么唯一的方法就是获悉之前发生过的所有交易。在造币厂模型里面,造币厂获悉所有的交易,并且决定了交易完成的先后顺序。如果想要在电子系统中排除第三方中介机构,那么交易信息就应当被公开宣布(publicly announced)[1] ,我们需要整个系统内的所有参与者,都有唯一公认的历史交易序列。收款人需要确保在交易期间绝大多数的节点都认同该交易是首次出现。

3. 时间戳服务器(Timestamp server)

本解决方案首先提出一个“时间戳服务器”。时间戳服务器通过对以区块(block)形式存在的一组数据实施随机散列而加上时间戳,并将该随机散列进行广播,就像在新闻或世界性新闻组网络(Usenet)的发帖一样[2][3][4][5] 。显然,该时间戳能够证实特定数据必然于某特定时间是的确存在的,因为只有在该时刻存在了才能获取相应的随机散列值。每个时间戳应当将前一个时间戳纳入其随机散列值中,每一个随后的时间戳都对之前的一个时间戳进行增强(reinforcing),这样就形成了一个链条(Chain)。
2

4. 工作量证明(Proof-of-Work)

为了在点对点的基础上构建一组分散化的时间戳服务器,仅仅像报纸或世界性新闻网络组一样工作是不够的,我们还需要一个类似于亚当•柏克(Adam Back)提出的哈希现金(Hashcash)[6] 。在进行随机散列运算时,工作量证明机制引入了对某一个特定值的扫描工作,比方说SHA-256下,随机散列值以一个或多个0开始。那么随着0的数目的上升, 找到这个解所需要的工作量将呈指数增长,而对结果进行检验则仅需要一次随机散列运算。
我们在区块中补增一个随机数(Nonce),这个随机数要使得该给定区块的随机散列值出现了所需的那么多个0。我们通过反复尝试来找到这个随机数,直到找到为止,这样我们就构建了一个工作量证明机制。只要该CPU耗费的工作量能够满足该工作量证明机制,那么除非重新完成相当的工作量,该区块的信息就不可更改。由于之后的区块是链接在该区块之后的,所以想要更改该区块中的信息,就还需要重新完成之后所有区块的全部工作量。
3
同时,该工作量证明机制还解决了在集体投票表决时,谁是大多数的问题。如果决定大多数的方式是基于IP地址的,一IP地址一票,那么如果有人拥有分配大量IP地址的权力,则该机制就被破坏了。而工作量证明机制的本质则是一CPU一票。“大多数”的决定表达为最长的链,因为最长的链包含了最大的工作量。如果大多数的CPU为诚实的节点控制,那么诚实的链条将以最快的速度延长,并超越其他的竞争链条。如果想要对业已出现的区块进行修改,攻击者必须重新完成该区块的工作量外加该区块之后所有区块的工作量,并最终赶上和超越诚实节点的工作量。我们将在后文证明,设想一个较慢的攻击者试图赶上随后的区块,那么其成功概率将呈指数化递减。
另一个问题是,硬件的运算速度在高速增长,而节点参与网络的程度则会有所起伏。为了解决这个问题,工作量证明的难度(the proof-of-work difficulty)将采用移动平均目标的方法来确定,即令难度指向令每小时生成区块的速度为某一个预定的平均数。如果区块生成的速度过快,那么难度就会提高。

5. 网络

运行该网络的步骤如下:

  • 1) 新的交易向全网进行广播;
  • 2) 每一个节点都将收到的交易信息纳入一个区块中;
  • 3) 每个节点都尝试在自己的区块中找到一个具有足够难度的工作量证明;
  • 4) 当一个节点找到了一个工作量证明,它就向全网进行广播;
  • 5) 当且仅当包含在该区块中的所有交易都是有效的且之前未存在过的,其他节点才认同该区块的有效性;
  • 6) 其他节点表示他们接受该区块,而表示接受的方法,则是在跟随该区块的末尾,制造新的区块以延长该链条,而将被接受区块的随机散列值视为先于新区快的随机散列值。

节点始终都将最长的链条视为正确的链条,并持续工作和延长它。如果有两个节点同时广播不同版本的新区块,那么其他节点在接收到该区块的时间上将存在先后差别。当此情形,他们将在率先收到的区块基础上进行工作,但也会保留另外一个链条,以防后者变成最长的链条。该僵局(tie)的打破要等到下一个工作量证明被发现,而其中的一条链条被证实为是较长的一条,那么在另一条分支链条上工作的节点将转换阵营,开始在较长的链条上工作。
所谓“新的交易要广播”,实际上不需要抵达全部的节点。只要交易信息能够抵达足够多的节点,那么他们将很快被整合进一个区块中。而区块的广播对被丢弃的信息是具有容错能力的。如果一个节点没有收到某特定区块,那么该节点将会发现自己缺失了某个区块,也就可以提出自己下载该区块的请求。

6. 激励

我们约定如此:每个区块的第一笔交易进行特殊化处理,该交易产生一枚由该区块创造者拥有的新的电子货币。这样就增加了节点支持该网络的激励,并在没有中央集权机构发行货币的情况下,提供了一种将电子货币分配到流通领域的一种方法。这种将一定数量新货币持续增添到货币系统中的方法,非常类似于耗费资源去挖掘金矿并将黄金注入到流通领域。此时,CPU的时间和电力消耗就是消耗的资源。
另外一个激励的来源则是交易费(transaction fees)。如果某笔交易的输出值小于输入值,那么差额就是交易费,该交易费将被增加到该区块的激励中。只要既定数量的电子货币已经进入流通,那么激励机制就可以逐渐转换为完全依靠交易费,那么本货币系统就能够免于通货膨胀。
激励系统也有助于鼓励节点保持诚实。如果有一个贪婪的攻击者能够调集比所有诚实节点加起来还要多的CPU计算力,那么他就面临一个选择:要么将其用于诚实工作产生新的电子货币,或者将其用于进行二次支付攻击。那么他就会发现,按照规则行事、诚实工作是更有利可图的。因为该等规则使得他能够拥有更多的电子货币,而不是破坏这个系统使得其自身财富的有效性受损。

7. 回收硬盘空间

如果最近的交易已经被纳入了足够多的区块之中,那么就可以丢弃该交易之前的数据,以回收硬盘空间。为了同时确保不损害区块的随机散列值,交易信息被随机散列时,被构建成一种Merkle树(Merkle tree)[7] 的形态,使得只有根(root)被纳入了区块的随机散列值。通过将该树(tree)的分支拔除(stubbing)的方法,老区块就能被压缩。而内部的随机散列值是不必保存的。
4
不含交易信息的区块头(Block header)大小仅有80字节。如果我们设定区块生成的速率为每10分钟一个,那么每一年产生的数据位4.2MB。(80 bytes * 6 * 24 * 365 = 4.2MB)。2008年,PC系统通常的内存容量为2GB,按照摩尔定律的预言,即使将全部的区块头存储于内存之中都不是问题。

8. 简化的支付确认(Simplified Payment Verification)

在不运行完整网络节点的情况下,也能够对支付进行检验。一个用户需要保留最长的工作量证明链条的区块头的拷贝,它可以不断向网络发起询问,直到它确信自己拥有最长的链条,并能够通过merkle的分支通向它被加上时间戳并纳入区块的那次交易。节点想要自行检验该交易的有效性原本是不可能的,但通过追溯到链条的某个位置,它就能看到某个节点曾经接受过它,并且于其后追加的区块也进一步证明全网曾经接受了它。
5
当此情形,只要诚实的节点控制了网络,检验机制就是可靠的。但是,当全网被一个计算力占优的攻击者攻击时,将变得较为脆弱。因为网络节点能够自行确认交易的有效性,只要攻击者能够持续地保持计算力优势,简化的机制会被攻击者焊接的(fabricated)交易欺骗。那么一个可行的策略就是,只要他们发现了一个无效的区块,就立刻发出警报,收到警报的用户将立刻开始下载被警告有问题的区块或交易的完整信息,以便对信息的不一致进行判定。对于日常会发生大量收付的商业机构,可能仍会希望运行他们自己的完整节点,以保持较大的独立完全性和检验的快速性。
7

9. 价值的组合与分割(Combining and Splitting Value)

虽然可以单个单个地对电子货币进行处理,但是对于每一枚电子货币单独发起一次交易将是一种笨拙的办法。为了使得价值易于组合与分割,交易被设计为可以纳入多个输入和输出。一般而言是某次价值较大的前次交易构成的单一输入,或者由某几个价值较小的前次交易共同构成的并行输入,但是输出最多只有两个:一个用于支付,另一个用于找零(如有)。
需要指出的是,当一笔交易依赖于之前的多笔交易时,这些交易又各自依赖于多笔交易,但这并不存在任何问题。因为这个工作机制并不需要展开检验之前发生的所有交易历史。

10. 隐私(Privacy)

6
传统的造币厂模型为交易的参与者提供了一定程度的隐私保护,因为试图向可信任的第三方索取交易信息是严格受限的。但是如果将交易信息向全网进行广播,就意味着这样的方法失效了。但是隐私依然可以得到保护:将公钥保持为匿名。公众得知的信息仅仅是有某个人将一定数量的货币发所给了另外一个人,但是难以将该交易同特定的人联系在一起,也就是说,公众难以确信,这些人究竟是谁。这同股票交易所发布的信息是类似的,股票交易发生的时间、交易量是记录在案且可供查询的,但是交易双方的身份信息却不予透露。
作为额外的预防措施,使用者可以让每次交易都生成一个新的地址,以确保这些交易不被追溯到一个共同的所有者。但是由于并行输入的存在,一定程度上的追溯还是不可避免的,因为并行输入表明这些货币都属于同一个所有者。此时的风险在于,如果某个人的某一个公钥被确认属于他,那么就可以追溯出此人的其它很多交易。

11. 计算

设想如下场景:一个攻击者试图比诚实节点产生链条更快地制造替代性区块链。即便它达到了这一目的,但是整个系统也并非就此完全受制于攻击者的独断意志了,比方说凭空创造价值,或者掠夺本不属于攻击者的货币。这是因为节点将不会接受无效的交易,而诚实的节点永远不会接受一个包含了无效信息的区块。一个攻击者能做的,最多是更改他自己的交易信息,并试图拿回他刚刚付给别人的钱。
诚实链条和攻击者链条之间的竞赛,可以用二叉树随机漫步(Binomial Random Walk)来描述。成功事件定义为诚实链条延长了一个区块,使其领先性+1,而失败事件则是攻击者的链条被延长了一个区块,使得差距-1。
攻击者成功填补某一既定差距的可能性,可以近似地看做赌徒破产问题(Gambler’s Ruin problem)。假定一个赌徒拥有无限的透支信用,然后开始进行潜在次数为无穷的赌博,试图填补上自己的亏空。那么我们可以计算他填补上亏空的概率,也就是该攻击者赶上诚实链条,如下所示[8]
pq
假定p>q,那么攻击成功的概率就因为区块数的增长而呈现指数化下降。由于概率是攻击者的敌人,如果他不能幸运且快速地获得成功,那么他获得成功的机会随着时间的流逝就变得愈发渺茫。那么我们考虑一个收款人需要等待多长时间,才能足够确信付款人已经难以更改交易了。我们假设付款人是一个支付攻击者,希望让收款人在一段时间内相信他已经付过款了,然后立即将支付的款项重新支付给自己。虽然收款人届时会发现这一点,但为时已晚。
收款人生成了新的一对密钥组合,然后只预留一个较短的时间将公钥发送给付款人。这将可以防止以下情况:付款人预先准备好一个区块链然后持续地对此区块进行运算,直到运气让他的区块链超越了诚实链条,方才立即执行支付。当此情形,只要交易一旦发出,攻击者就开始秘密地准备一条包含了该交易替代版本的平行链条。
然后收款人将等待交易出现在首个区块中,然后在等到z个区块链接其后。此时,他仍然不能确切知道攻击者已经进展了多少个区块,但是假设诚实区块将耗费平均预期时间以产生一个区块,那么攻击者的潜在进展就是一个泊松分布,分布的期望值为:
image022
当此情形,为了计算攻击者追赶上的概率,我们将攻击者取得进展区块数量的泊松分布的概率密度,乘以在该数量下攻击者依然能够追赶上的概率。
pq2
化为如下形式,避免对无限数列求和:
pq3
写为如下C语言代码:
#include double AttackerSuccessProbability(double q, int z)
{
double p = 1.0 - q;
double lambda = z * (q / p);
double sum = 1.0;
int i, k;
for (k = 0; k <= z; k++)
{
double poisson = exp(-lambda);
for (i = 1; i <= k; i++)
poisson *= lambda / i;
sum -= poisson * (1 - pow(q / p, z - k));
}
return sum;
}

对其进行运算,我们可以得到如下的概率结果,发现概率对z值呈指数下降。
当q=0.1时
z=0 P=1.0000000
z=1 P=0.2045873
z=2 P=0.0509779
z=3 P=0.0131722
z=4 P=0.0034552
z=5 P=0.0009137
z=6 P=0.0002428
z=7 P=0.0000647
z=8 P=0.0000173
z=9 P=0.0000046
z=10 P=0.0000012
当q=0.3时
z=0 P=1.0000000
z=5 P=0.1773523
z=10 P=0.0416605
z=15 P=0.0101008
z=20 P=0.0024804
z=25 P=0.0006132
z=30 P=0.0001522
z=35 P=0.0000379
z=40 P=0.0000095
z=45 P=0.0000024
z=50 P=0.0000006
求解令P<0.1%的z值:
为使P<0.001,则
q=0.10 z=5
q=0.15 z=8
q=0.20 z=11
q=0.25 z=15
q=0.30 z=24
q=0.35 z=41
q=0.40 z=89
q=0.45 z=340

12.结论

我们在此提出了一种不需要信用中介的电子支付系统。我们首先讨论了通常的电子货币的电子签名原理,虽然这种系统为所有权提供了强有力的控制,但是不足以防止双重支付。为了解决这个问题,我们提出了一种采用工作量证明机制的点对点网络来记录交易的公开信息,只要诚实的节点能够控制绝大多数的CPU计算能力,就能使得攻击者事实上难以改变交易记录。该网络的强健之处在于它结构上的简洁性。节点之间的工作大部分是彼此独立的,只需要很少的协同。每个节点都不需要明确自己的身份,由于交易信息的流动路径并无任何要求,所以只需要尽其最大努力传播即可。节点可以随时离开网络,而想重新加入网络也非常容易,因为只需要补充接收离开期间的工作量证明链条即可。节点通过自己的CPU计算力进行投票,表决他们对有效区块的确认,他们不断延长有效的区块链来表达自己的确认,并拒绝在无效的区块之后延长区块以表示拒绝。本框架包含了一个P2P电子货币系统所需要的全部规则和激励措施。

注释    (↵ returns to text)

  1. W Dai(戴伟),a scheme for a group of untraceable digital pseudonyms to pay each other with money and to enforce contracts amongst themselves without outside help(一种能够借助电子假名在群体内部相互支付并迫使个体遵守规则且不需要外界协助的电子现金机制), “B-money”, http://www.weidai.com/bmoney.txt, 1998
  2. H. Massias, X.S. Avila, and J.-J. Quisquater, “Design of a secure timestamping service with minimal trust requirements,”(在最小化信任的基础上设计一种时间戳服务器) In 20th Symposium on Information Theory in the Benelux, May 1999.
  3. S. Haber, W.S. Stornetta, “How to time-stamp a digital document,” (怎样为电子文件添加时间戳)In Journal of Cryptology, vol 3, No.2, pages 99-111, 1991.
  4. D. Bayer, S. Haber, W.S. Stornetta, “Improving the efficiency and reliability of digital time-stamping,”(提升电子时间戳的效率和可靠性) In Sequences II: Methods in Communication, Security and Computer Science, pages 329-334, 1993.
  5. S. Haber, W.S. Stornetta, “Secure names for bit-strings,”(比特字串的安全命名) In Proceedings of the 4th ACM Conference on Computer and Communications Security, pages 28-35, April 1997. on Computer and Communications Security, pages 28-35, April 1997.
  6. A. Back, “Hashcash – a denial of service counter-measure,”(哈希现金——拒绝服务式攻击的克制方法)http://www.hashcash.org/papers/hashcash.pdf, 2002.
  7. R.C. Merkle, “Protocols for public key cryptosystems,” (公钥密码系统的协议)In Proc. 1980 Symposium on Security and Privacy, IEEE Computer Society, pages 122-133, April 1980.
    S. Haber, W.S. Stornetta, “Secure names for bit-strings,”(比特字串安全命名) In Proceedings of the 4th ACM Conference on Computer and Communications Security, pages 28-35, April 1997. on Computer and Communications Security, pages 28-35, April 1997.
    H. Massias, X.S. Avila, and J.-J. Quisquater, “Design of a secure timestamping service with minimal trust requirements,”(在最小化信任的条件下设计一种时间戳服务器) In 20th Symposium on Information Theory in the Benelux, May 1999.
  8. W. Feller, “An introduction to probability theory and its applications,” (概率学理论与应用导论)1957